Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The Scintillating Bubble Chamber (SBC) collaboration purchased 32 Hamamatsu VUV4 silicon photomultipliers (SiPMs) for use in SBC-LAr10, a bubble chamber containing 10 kg of liquid argon. A dark-count characterization technique, which avoids the use of a single-photon source, was used at two temperatures to measure the VUV4 SiPMs breakdown voltage (VBD), the SiPM gain (gSiPM), the rate of change ofgSiPMwith respect to voltage (m), the dark count rate (DCR), and the probability of a correlated avalanche (PCA) as well as the temperature coefficients of these parameters. A Peltier-based chilled vacuum chamber was developed at Queen's University to cool down the Quads to 233.15 ± 0.2 K and 255.15 ± 0.2 K with average stability of ±20 mK. An analysis framework was developed to estimate VBDto tens of mV precision and DCR close to Poissonian error. The temperature dependence of VBDwas found to be 56 ± 2 mV K-1, andmon average across all Quads was found to be (459 ± 3(stat.)±23(sys.))× 103e-PE-1V-1. The average DCR temperature coefficient was estimated to be 0.099 ± 0.008 K-1corresponding to a reduction factor of 7 for every 20 K drop in temperature. The average temperature dependence of PCAwas estimated to be 4000 ± 1000 ppm K-1. PCAestimated from the average across all SiPMs is a better estimator than the PCAcalculated from individual SiPMs, for all of the other parameters, the opposite is true. All the estimated parameters were measured to the precision required for SBC-LAr10, and the Quads will be used in conditions to optimize the signal-to-noise ratio.more » « less
- 
            PICO bubble chambers have exceptional sensitivity to inelastic dark matter-nucleus interactions due to a combination of their extended nuclear recoil energy detection window from a few keV to O(100 keV) or more and the use of iodine as a heavy target. Inelastic dark matter-nucleus scattering is interesting for studying the properties of dark matter, where many theoretical scenarios have been developed. This study reports the results of a search for dark matter inelastic scattering with the PICO-60 bubble chambers. The analysis reported here comprises physics runs from PICO-60 bubble chambers using CF3I and C3F8. The CF3I run consisted of 36.8 kg of CF3I reaching an exposure of 3415 kg-day operating at thermodynamic thresholds between 7 and 20 keV. The C3F8 runs consisted of 52 kg of C3F8 reaching exposures of 1404 kg-day and 1167 kg-day running at thermodynamic thresholds of 2.45 keV and 3.29 keV, respectively. The analysis disfavors various scenarios, in a wide region of parameter space, that provide a feasible explanation of the signal observed by DAMA, assuming an inelastic interaction, considering that the PICO CF3I bubble chamber used iodine as the target material.more » « less
- 
            Abstract The field of dark matter detection is a highly visible and highly competitive one. In this paper, we propose recommendations for presenting dark matter direct detection results particularly suited for weak-scale dark matter searches, although we believe the spirit of the recommendations can apply more broadly to searches for other dark matter candidates, such as very light dark matter or axions. To translate experimental data into a final published result, direct detection collaborations must make a series of choices in their analysis, ranging from how to model astrophysical parameters to how to make statistical inferences based on observed data. While many collaborations follow a standard set of recommendations in some areas, for example the expected flux of dark matter particles (to a large degree based on a paper from Lewin and Smith in 1995), in other areas, particularly in statistical inference, they have taken different approaches, often from result to result by the same collaboration. We set out a number of recommendations on how to apply the now commonly used Profile Likelihood Ratio method to direct detection data. In addition, updated recommendations for the Standard Halo Model astrophysical parameters and relevant neutrino fluxes are provided. The authors of this note include members of the DAMIC, DarkSide, DARWIN, DEAP, LZ, NEWS-G, PandaX, PICO, SBC, SENSEI, SuperCDMS, and XENON collaborations, and these collaborations provided input to the recommendations laid out here. Wide-spread adoption of these recommendations will make it easier to compare and combine future dark matter results.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
